Skip to contents

Generates an artificial sample of morphometric data with specified characteristics. Recommended to use set.seed() before running to ensure reproducibility.

Usage

fake_crustaceans(
  L50 = 100,
  slope = 5,
  n = 1000,
  x_mean = 105,
  x_sd = 20,
  allo_params = c(1.2, 0.1, 1.2, 0.1),
  error_scale = 20
)

Arguments

L50

Integer or double; the desired true length at 50% maturity on the scale of the x-axis/reference variable. Defaults to 100 mm.

slope

Integer or double; the desired slope parameter for the logistic equation describing the probability of maturity at a given value of the x-axis/reference variable. Default is 5.

n

Sample size of the simulated data set. Default is 1000 individuals.

x_mean

Mean of the reference variable (e.g., carapace width). Default is 105 mm.

x_sd

Standard deviation of the reference variable (e.g., carapace width). Default is 20 mm.

allo_params

A numeric vector of length 4 containing the parameters controlling how the allometric relationship between the x and y variables changes at maturity. Should contain the immature slope parameter, immature intercept parameter, mature slope parameter, and mature intercept parameter, in that order.

error_scale

Scaling for the error added to the simulated data

Value

A data frame with n rows. Columns are: (1) the x variable on the original scale, (2) the probability of maturity for the individual, (3) the assigned maturity status, 1 or 0, (4) the y variable on the original scale, (5) the log-transformed x variable, and (6) the log-transformed y variable

Examples

set.seed(123)
fake_crustaceans(n=25)
#>            x    prob_mat mature        y    log_x    log_y
#> 1   93.79049 0.224104987      0 22.59484 4.541063 3.117722
#> 2  100.39645 0.519812132      1 25.51133 4.609127 3.239123
#> 3  136.17417 0.999279492      1 34.75503 4.913935 3.548324
#> 4  106.41017 0.782795735      1 27.50829 4.667301 3.314487
#> 5  107.58575 0.820118559      1 28.25854 4.678288 3.341396
#> 6  139.30130 0.999614375      1 37.15985 4.936639 3.615229
#> 7  114.21832 0.944990284      1 30.87054 4.738112 3.429802
#> 8   79.69878 0.016952453      0 18.47184 4.378254 2.916248
#> 9   91.26294 0.148373993      1 22.84396 4.513745 3.128687
#> 10  96.08676 0.313749488      0 24.30950 4.565252 3.190867
#> 11 129.48164 0.997258014      1 33.12834 4.863539 3.500389
#> 12 112.19628 0.919772153      1 27.44566 4.720250 3.312208
#> 13 113.01543 0.931059913      1 29.12296 4.727524 3.371527
#> 14 107.21365 0.808877185      1 26.86927 4.674824 3.290983
#> 15  93.88318 0.227344896      1 24.81147 4.542051 3.211306
#> 16 140.73826 0.999710670      1 39.63867 4.946902 3.679805
#> 17 114.95701 0.952184179      1 30.00144 4.744558 3.401245
#> 18  65.66766 0.001041066      0 14.57881 4.184607 2.679569
#> 19 119.02712 0.978234507      1 30.35877 4.779351 3.413086
#> 20  95.54417 0.290869341      0 25.27583 4.559589 3.229849
#> 21  83.64353 0.036569182      0 19.47490 4.426564 2.969126
#> 22 100.64050 0.531981364      0 26.96557 4.611555 3.294561
#> 23  84.47991 0.042941829      0 20.33126 4.436514 3.012160
#> 24  90.42218 0.128356952      0 21.87246 4.504490 3.085228
#> 25  92.49921 0.182402098      0 22.22107 4.527200 3.101041